7 лучших книг по глубокому обучению📚, которые стоит прочитать в 2024 году
Все более сложная область искусственного интеллекта (ИИ) выросла и породила несколько дисциплин, которые заслуживают отдельного пристального внимания, а именно машинное обучение (МО) и подмножество МО «глубокое обучение». Как это звучит, глубокое обучение — это процесс использования анализа данных и последних достижений в области вычислительной мощности, позволяющий компьютерам наблюдать, учиться и реагировать на относительно сложные ситуации быстрее, чем это могут сделать люди.
Учитывая столь быструю эволюцию искусственного интеллекта и его ответвлений, сейчас доступно несколько хороших книг по глубокому обучению для тех, кто стремится овладеть этой технологией. Хотя могут быть опасения по поводу того, что ИИ отнимет у людей рабочие места (Скайнет, кто-нибудь?), правда в том, что достижения в области ИИ – и, как следствие, глубокого обучения – породили огромный спрос на таланты. Всякий раз, когда есть спрос, обычно следуют гарантия занятости и хорошая заработная плата.
Бесплатное 9-часовое руководство Simplilearn по глубокому обучению разожжет ваш аппетит, но в 2024 году вы, возможно, захотите копнуть немного глубже, прочитав следующие книги по глубокому обучению. Если вы серьезно относитесь к продвижению своей карьеры в области ИИ, рассмотрите комплексный онлайн-сертификационный курс глубокого обучения Simplilearn (с Keras и Tensorflow).
7 лучших книг по глубокому обучению
Вот список лучших книг по глубокому обучению, которые вы должны прочитать в 2024 году.
Программы для Windows, мобильные приложения, игры - ВСЁ БЕСПЛАТНО, в нашем закрытом телеграмм канале - Подписывайтесь:)
1. «Глубокое обучение с подкреплением», Мигель Моралес.
В рамках глубокого обучения существует подраздел глубокого обучения с подкреплением (DRL). Эта дисциплина внутри дисциплины основана на опыте пользователей, методе проб и ошибок для определения наиболее эффективных и действенных путей решения данного процесса или проблемы. Некоторые из самых продвинутых приложений DRL могут предсказывать движения на фондовом рынке и даже побеждать шахматных гроссмейстеров.
В книге Моралеса используется практический подход к изучению DRL, предоставляя упражнения, которые помогут учащимся построить свои собственные системы глубокого обучения с использованием языка программирования Python. Он также включает в себя широкое использование примеров и иллюстраций, чтобы лучше понять фундаментальные принципы и практическое применение DRL. Глубокое обучение с подкреплением также включает в себя сопутствующую электронную книгу, поэтому у вас всегда будет доступ к ней на настольном компьютере или мобильном устройстве.
2. Глубокое обучение для систем машинного зрения, Мохамед Эльгенди.
Хотя это все еще кажется невероятно футуристическим, беспилотные автомобили уже не за горами и скоро станут нормой. Даже сейчас многие новые автомобили имеют системы, которые обнаруживают объекты на вашем пути, когда вы выезжаете с проезжей части. Основной технологией, способствующей этому развитию, является компьютерное зрение, обеспечиваемое посредством глубокого обучения, которое дает компьютерам «глаза», позволяющие им взаимодействовать с реальным миром.
Эксперт по искусственному интеллекту Мохамед Эльгенди, вице-президент по разработкам в Rakuten, написал книгу по глубокому обучению, которая одновременно полна мудрости и бесконечно доступна. Глубокое обучение для систем машинного зрения использует базовую алгебру для объяснения концепций, которые позволяют компьютерам «видеть» и изучать, как устроен физический мир, а также обучающие материалы, которые помогут вам создавать приложения для распознавания лиц и генерации изображений.
3. Глубокое обучение в компьютерном зрении: принципы и приложения, под редакцией Махмуда Хассабаллы и Али Исмаила Авада.
Еще одна книга по глубокому обучению, посвященная нише компьютерного зрения. Глубокое обучение в области компьютерного зрения: Принципы и приложения знакомят с принципами глубокого обучения, лежащими в основе конкретной темы в каждой главе. Темы включают обнаружение объектов с помощью сверточных нейронных сетей, мультибиометрические системы распознавания лиц, глубокую семантическую сегментацию в автономном вождении и многое другое. Эта книга, предназначенная для опытных специалистов в области искусственного интеллекта и продвинутых учащихся, посвящена областям компьютерного зрения, распознавания образов и обработки изображений.
4. «Глубокое обучение», Ян Гудфеллоу, Йошуа Бенджио и Аарон Курвиль.
Этот академический учебник для колледжа охватывает основы глубокого обучения и предназначен для помощи тем, кто совершенно не знаком с этой областью. Авторы, являющиеся лидерами в своей области, подчеркивают важность знания таких математических понятий, как линейная алгебра и теория вероятности, чтобы лучше понять, как работает глубокое обучение, выходя за рамки простого программирования. Этот Глубокое обучение Книга также объясняет концепции глубокого обучения, которые широко используются в отрасли, моделирования последовательностей и распознавания речи.
Хотя бумажную копию книги можно приобрести в большинстве интернет-книготорговцев, у этой всеобъемлющей книги также есть бесплатная онлайн-версия. По ссылке (в заголовке выше) вы также можете получить доступ к лекциям, упражнениям и ссылкам на дополнительные сайты. Это отличное место для начала, если вы новичок в этой области.
5. Искусственный интеллект на примере (2-е издание), Денис Ротман.
В этой книге по глубокому обучению объясняются основы ИИ, в том числе значительная часть посвящена концепциям глубокого обучения, и она поможет вам разработать собственные функции ИИ с помощью практических упражнений и учебных пособий. Реальные примеры приложений глубокого обучения, подробно описанные в книге, включают приложения искусственного интеллекта в блокчейне и Интернет вещей (IoT). Вы также узнаете, как разрабатывать функции чат-бота с использованием рекуррентных нейронных сетей (RNN) и сверточных нейронных сетей (CNN).
Полностью переработанный и обновленный Искусственный интеллект на примере второго издания включает примеры сочетания обучения с подкреплением и глубокого обучения, а также другие новые разработки в области искусственного интеллекта и машинного обучения.
6. Нейронные сети и глубокое обучение, Майкл Нильсен.
Эта бесплатная онлайн-книга описывает парадигму программирования нейронных сетей, вдохновленную человеческим мозгом, и помогает связать точки между этими сетями и глубоким обучением. Считается одной из лучших книг по нейронным сетям. Нейронные сети и глубокое обучение использует теоретический подход к предмету, чтобы проиллюстрировать, как он может помочь решить распространенные проблемы, связанные с распознаванием речи и изображений, а также обработкой естественного языка.
Хотя в книге представлены передовые математические методы, лежащие в основе этих концепций глубокого обучения, Нильсен также предоставляет руководство, которое поможет вам понять их, и краткое изложение каждой главы, в которой математика отсутствует. Учитывая, что он бесплатен и высоко ценится, это отличный ресурс для новичков в области глубокого обучения.
7. «Глубокое обучение: подход практика», Адам Гибсон и Джош Паттерсон.
Адам Гибсон и Джош Паттерсон — соавторы Глубокое обучение4j (DL4J), которая стала стандартной библиотекой программирования Java для глубокого обучения. Глубокое обучение: подход практика охватывает основы как машинного, так и глубокого обучения, применяя более практичный подход к технологии, чем другие. В этой книге объясняется, как глубокие сети развились из нейронных сетей, основы RNN и CNN, как сопоставить конкретные глубокие сети с правильной проблемой, как использовать библиотеку программирования DL4J в Spark и Hadoop и многое другое.
Выберите правильную программу
Раскройте потенциал искусственного интеллекта и машинного обучения с помощью комплексных программ Simplilearn. Выберите подходящую программу AI ML, чтобы освоить передовые технологии и продвинуть свою карьеру вперед.
Название программы | Инженер по искусственному интеллекту | Последипломная программа в области искусственного интеллекта и машинного обучения | Последипломная программа в области искусственного интеллекта и машинного обучения |
Гео | Все регионы | Все регионы | В/СТРОКА |
Университет | Простое обучение | Пердью | Калифорнийский технологический институт |
Длительность курса | 11 месяцев | 11 месяцев | 11 месяцев |
Требуется опыт кодирования | Базовый | Базовый | Нет |
Навыки, которые вы изучите | Более 10 навыков, включая структуру данных, манипулирование данными, NumPy, Scikit-Learn, Tableau и многое другое. | 16+ навыков, включая чат-боты, НЛП, Python, Keras и многое другое. | 8+ навыков, включая Контролируемое и неконтролируемое обучение Глубокое обучение Визуализация данных и многое другое. |
Дополнительные преимущества | – Получите доступ к эксклюзивным хакатонам, мастер-классам и сеансам «Спроси меня о чем угодно» от IBM. – Прикладное обучение посредством 3 основных и 12 отраслевых проектов. | Членство в Ассоциации выпускников Purdue Бесплатное членство в IIMJobs на 6 месяцев Помощь в составлении резюме | До 14 кредитов CEU Членство в кружке Caltech CTME |
Расходы | $$ | $$$$ | $$$$ |
Получите еще более глубокий опыт в области глубокого обучения: получите сертификат
Целеустремленные студенты и специалисты всегда читают и остаются в курсе последних событий в своей области. В дополнение к прочтению последних книг по глубокому обучению в 2024 году, почему бы не поднять свое мастерство глубокого обучения на новый уровень? Комплексная, отраслевая программа последипломного образования Калифорнийского технологического института Simplilearn в области искусственного интеллекта и машинного обучения поможет вам в этом. Если вам нужен более полный опыт обучения, посетите курс искусственного интеллекта и машинного обучения, предлагаемый в партнерстве с Университетом Пердью. Не ждите, пока будущее пройдет мимо вас; станьте частью этого сегодня!
Программы для Windows, мобильные приложения, игры - ВСЁ БЕСПЛАТНО, в нашем закрытом телеграмм канале - Подписывайтесь:)